午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務,零缺陷,輔助研發”PCBA訂購單需求。
PCBA方案設計
PCBA方案設計
Explaining the key points of high frequency PCB design company
29Nov
Jeff 0條評論

Explaining the key points of high frequency PCB design company

Nowadays, it is more and more common for electronIC products to carry the wireless communication function, and the wireless communication technology is realized by relying on the RF circuit on the PCB. Unfortunately, even PCB designers often shy away from the RF circuit because it will bring huge design challenges and require professional design and SIMulation analysis tools. Because of this, the RF part of PCB has been designed by independent designers with RF design expertise for many years.

The RF circuit design engineer has brought out 18 kinds of martial arts. After a fierce operation, he has designed the RF circuit layout below and exported the DXF format to PCB Layout for copying

After importing the DXF format file of RF circuit into PCB design, we found that the routing has both right angles and sharp corners. We thought to ourselves, emmm, the RF is really water, the salary is higher than the labor, and we don't know how to avoid sharp chamfer and arc transition. Then we re optimized the routing of RF circuit

pcb board

In order to avoid misunderstanding in the future, the RF bacteria calLED the layout bacteria after work, and closed the door to guide some key points related to RF PCB design.

According to the radio frequency circuit theory, when the wavelength of the signal transmitted on the signal connection line can be comparable to the geometric dimensions of the discrete circuit components, the bonding pad of the radio frequency IC pin, the transmission line of the radio frequency signal on the PCB, the radio frequency passive components, the through-hole and even the grounded copper laying are all important factors that seriously affect the performance of the radio frequency signal.

Microstrip line is an ideal choice for transmitting high-frequency signals on. Unless the connection distance between IC and antenna is very short, please use coaxial cable or transmission line with matching characteristic impedance. On the printed circuit board, it is better to use the microstrip line transmission line with the structure shown in the figure below.

The microstrip transmission line includes a fixed width metal wire (conductor) and a grounding area directly below (adjacent layers). For example, routing on layer 1 (top metal) requires a solid grounding area on layer 2. The width of the wire, the thickness of the dielectric layer, and the type of dielectric determine the characteristic impedance (usually 50 Ω or 75 Ω).

Of course, in addition to the microstrip line, there is also a common transmission line called the stripline

The ribbon line includes the routing of fixed width of the inner layer and the grounding area above and below it. The conductor can be located in the middle of the grounding area or have a certain offset. This method is suitable for RF cabling of the inner layer.

Since the stripline is also suitable for RF cabling, why did the old Wu say that the microstrip line is the ideal choice for transmitting high-frequency signals on a PCB?

Both the microstrip line and the stripline have excellent performance in transmitting millimeter wave frequency. The difference lies in the manufacturing cost.

Compared with the stripline circuit, the microstrip circuit has fewer processing steps, and the circuit components are easier to place, so it is easier to manufacture (lower manufacturing cost). Compared with microstrip lines, ribbon lines can provide more isolation for adjacent circuit lines and support more dense component layout. In addition, the stripline circuit is also very suitable for manufacturing multilayer circuit boards, and each layer can be well isolated.

The electrical properties of microstrip line and stripline conductor are affected by the dielectric constant of insulating material and proximity effect of ground plane. The microstrip line has only one ground plane, while the stripline has two ground planes. For microstrip lines, the effective permittivity affecting the conductor impedance is the sum of the relative permittivity of the insulating material and the air above the circuit (equal to 1). The effective permittivity of the stripline is the sum of the relative permittivity of the two substrates above and below the conductor.

For all high-frequency circuits, maintaining impedance control is critical to achieving consistent amplitude and phase response electrical performance. The impedance of conductors of two transmission lines is a function of conductor width, conductor thickness, thickness of insulating substrate, relative permittivity or dielectric constant of substrate, among other factors. For striplines, it is not important whether the distance between the central conductor and the two ground planes is equal or whether the dielectric constant of the upper and lower insulators of the conductor is the same (the same is true for microstrip lines).

The stripline has two ground planes, so the 50 Ω (or any given impedance) line of the stripline is thinner than the conductor with the same impedance of the microstrip line. Although thinner wires support higher circuit density, thinner wires also require stricter manufacturing tolerances, and the dielectric constant of the substrate of the entire circuit must be very consistent. The dielectric loss (defined by the dissipation factor of the substrate) of the single ended (unbalanced) transmission line of the microstrip line is less than that of the stripline, because some field lines of the microstrip line are in the air, and the dissipation factor is negligible.

Of course, the performance of these two transmission lines is virtually the same as that of the carrier used in their manufacture, the insulating substrate. As the PCB materials used, such as FR-4, can reduce the cost, but also limit its performance, selecting the most appropriate materials according to different applications of microstrip lines and striplines will give better play to the advantages of these two transmission lines.

Our pcb design company

As with many engineering decisions, the choice of microstrip or stripline will be weighed. For example, the circuit density of the stripline circuit is high. Therefore, at the same frequency, it requires more material layers, more processing time and cost, and more attention to detail processing than the microstrip circuit.

Compared with the common microstrip lines and strip lines, another RF transmission line is grounded coplanar waveguide, which provides good isolation between adjacent RF lines and other signal lines.

build

The transmission mode of microstrip line and grounded coplanar waveguide circuit is quasi transverse electromagnetic mode (quasi TEM). Due to the enhanced grounding structure of grounded coplanar waveguide circuit, its machining is more complicated to some extent. Compared with microstrip line, grounded coplanar waveguide circuit has low dispersion characteristics. When the frequency rises to the millimeter wave band, the radiation loss of grounded coplanar waveguide circuit is lower than that of microstrip line circuit.

Due to the enhanced grounding structure, the grounded coplanar waveguide circuit has wider effective bandwidth and wider impedance range than the microstrip line circuit. However, the microstrip line circuit structure is relatively robust, and its simple bottom ground circuit structure is easy to process. In addition, the performance of microstrip line circuit is not sensitive to circuit processing factors, and its circuit performance is less affected by conductor/gap etching difference and conductor thickness difference.

The sharp corners of RF PCB circuit layout are specially designed for transmission line corner compensation

When the transmission line is required to bend (change direction) due to PCB wiring constraints, the bending radius used should be at least 3 tiMES the width of the intermediate conductor. in other words:

Bending radius ≥ 3 ×  (Lineweight)

This minimizes the change in characteristic impedance of the corner.

點擊
然后
聯系
主站蜘蛛池模板: 99久久99久久久精品齐齐| 国产蝌蚪视频在线观看| 欧美野外疯狂做受xxxx高潮 | 久久久久亚洲波多野结衣| 亚洲最大综合久久网成人| 激情国产一区二区三区四区小说| 国产98色在线 | 国产| 亚洲欧洲美色一区二区三区| 夜爽8888视频在线观看| 人人妻人人爽人人做夜欢视频九色| 中文字幕日韩一区二区不卡| 人妻体体内射精一区二区| 人妻系列无码专区无码专区 | 天天爽天天摸天天碰| 骚虎视频在线观看| 99欧美日本一区二区留学生| 亚洲第一综合网址网址| 少妇放荡的呻吟干柴烈火动漫| 狠狠躁夜夜躁人人爽天天古典| 国产成人av一区二区在线观看| 国产精品原创av片国产日韩| 中国精品18videosex性中国| 无码免费v片在线观看| 在线视频夫妻内射| 在线看片无码永久免费视频| 亚洲综合在线另类色区奇米| 玩弄japan白嫩少妇hd| 一卡二卡三卡视频| 大肉大捧一进一出好爽视频mba | 成人精品无码| 久久九九精品国产综合喷水| 极品国产主播粉嫩在线| 四虎国产精品成人影院| 97久久久人妻一区精品| 中文字幕人妻偷伦在线视频| 国产精品yy9299在线观看| 亚洲国产成人爱av在线播放| 亚洲精品日韩一区二区电影| 免费播放婬乱男女婬视频国产| 97se狼狼狼狼狼亚洲网| 国产爆乳美女娇喘呻吟|