午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務(wù),零缺陷,輔助研發(fā)”PCBA訂購單需求。
PCB制造
PCB制造
How flexible and rigid flexo PCB can be strengthened
22Oct
Summer 0條評論

How flexible and rigid flexo PCB can be strengthened

If we study the history of PCBs, we will notICe that they gradually shift according to MARKet demand. But this is nothing new, right? What's new in our market demand. While we thrive on technology, from optimization to best, we face a special need. Instead of making the case from the PCB, we need to make the board from the case design. But we have enough capacity to meet the demand.

 

One of the popular printed circuit boards today is the Flexible circuit board. Flexible PCBs allow you to assemble product circuits when the design of these products does not allow for rigid circuit boards. Therefore, they are invaluable for many electronic applications.

 

FPC 

 

Flex PCBs have their own demons; they may be too flexible!

 

They may not be very stiff where stiffness is required. This is where human experience coMES into play. We created PCB stiffeners for these cases. You may not be familiar with this name, or you may have just heard it. You are not sure what they are and where they are used.

 

The use of PCB reinforcement board

First, it's important to understand that PCB stiffeners are not an integral part of the Board Design. It exists only to provide mechanical support. When you need it, we call it a stiffener. Here are some God reasons for needing a stiffener:

 

Any specific area of the reinforcement board.

Maintain proper thickness in flex circuits.

Supports PCB assemblies and connectors.

Constrain flexible parts where they should be.

For better handling of thin circuit boards.

Keep certain areas of the flex circuit flat and stable.

Complies with ZIF connector specifications.

Increase the circuit bend radius at the intersection of rigid and flexible parts. This will avoid stressing the flexible part during multiple bending operations.

Basically, stiffeners are used when you need a rigid area in a flex circuit, possibly to protect the components or connectors attached there. This does not bend the circuit and protects the integrity of the part's solder joints.

 

PCB stiffener material

<When talking about using something, the first thing to think about is the material that makes it out of it. We usually make PCB stiffeners like most flex PCBs for FR4. FR4 ribs can also have copper features such as pads or plated holes for component mounting. Aluminum and polyimide are some other materials.

Rib thicknesses range from 0.008" to 0.059". The most commonly used thicknesses are 0.020", 0.031", 0.039" or 0.059". The thicker the PCB stiffener, the more support it provides. But each design seeks a different thickness. If you want the board to be thicker, use polyimide stiffeners. You will place them on the contact fingers as specified by the ZIF connector. It should be the connector that the flex circuit plugs into. Some common thickness requirements are 0.3mm or 0.2mm. Depending on the flex circuit material construction, the stiffener thickness can vary between 0.002" and 0.008". If you use ZIF stiffeners to thicken your board, your board may be harder than you need to.

 

In some cases, you may need to use other materials, such as stainless steel or aluminum, for PCB stiffeners. Correctly, you think these materials are more expensive. But you get better rigidity and heat dissipation. While there will be specific situations, you can put these expensive materials to your advantage. But most manufacturers don't think the benefits are worth the added cost of using a flexible circuit board.

 

PCB stiffener application

When we use ribs for Plated Through Hole (PTH) components, the ribs should be on the same side of the flex that we insert the component. This allows access to pads on the flex circuit. You can also attach stiffeners to both sides of the part. But then the assembly will require an array configuration review. Just to make sure you don't run into any complications during assembly. When we need an assembLED array for flex circuit design, it is common and cost effective to include FR4 stiffeners throughout the array boundary. This ends up being a strict array. In most cases, this allows parts to run automated assembly in the same way as rigid circuit board designs. This also eliminates the need for any additional tool boards etc.

 

Typically, you will use heat and pressure to attach the ribs to the circuit. So basically, by thermal bonding. You can also attach PCB stiffeners using pressure sensitive adhesive. We have a wide variety of adhesives. Two popular adhesives are generally pressure sensitive adhesives (PSAs) and thermal adhesives. We use these varieties to meet specific performance requirements. They have heat exposure, chEMIcal resistance and adhesion to a variety of materials. The type of adhesive depends on the location and/or configuration of the reinforcement. For example, if the rib does not extend to the circuit contour, in most cases it will require a PSA attachment and add an additional rib contour on the wire mesh for precise placement.

 

FR4 stiffeners are used for flexible PCBs in our own factory.

Before we wrap up the stiffener discussion, let's take a peek at the interesting ones.

We will now distinguish between rigid-flex PCBs and rigid PCBs based on FR4 stiffeners.

 

A rigid flex PCB is a flexible PCB but it is a bonded FR4 stiffener for increased rigidity during assembly. Therefore, a circuit board with stiffeners is still essentially a flexible circuit. Rigid-flex circuits are referred to as hybrid flexible circuits including rigid and flexible substrates. We laminate them into a single structure. By definition, you can see that rigid-flex circuits are not flex circuits.

There are no traces on the rigid part of the rigid flex, even on the pads. Such rigid components only increase the rigidity of the location. That said, it's just a mechanical connection between the two. However, for rigid-flex PCBs, both rigid and flex components are designed with traces, and we connect them through vias. That is, it is not a mechanical connection but an electrical connection of a rigid-flex PCB.

As we discussed in the previous point, it is also different if we talk about their connection. Rigid-flex PCBs have electrical connections, while rigid PCBs are used for mechanical support.

"Imagination is more important than knowledge. Because knowledge is limited, and imagination encompasses the whole world, stimulates progress, and breeds evolution." - Albert Einstein

 

What we basically want to convey is that we can guide you, train you on certain topics, but what the world needs is your imagination. Whatever we've discussed in this article may be technical, but it's human instinct. Bring this guide to PCB stiffeners to make your PCB stronger than ever.

點擊
然后
聯(lián)系
主站蜘蛛池模板: gv天堂gv无码男同在线观看| 精品日本一区二区免费视频| 国产重口老太和小伙乱| 在线观看国产网址你懂的| 狠狠五月激情六月丁香| 狠狠噜狠狠狠狠丁香五月| 精品无码久久久久久久久| 国产精品福利自产拍在线观看| 亚洲v欧美v日韩v国产v| 99久久久无码国产精品免费砚床| 亚洲国产综合精品中文第一| 亚洲一区激情校园小说| 国产亚洲日韩av在线播放不卡| 日韩人妻精品无码一区二区三区| 亚洲综合另类小说色区| 精品人妻少妇嫩草AV无码专区 | 久久国产中文娱乐网| 国产成人无码久久久精品一| 欧美颜射内射中出口爆在线| 无码av岛国片在线播放| 在线精品无码字幕无码av| 人人曰人人做人人| 波多野结衣乳巨码无在线观看| 亚洲色最新高清av网站| 日韩a片无码一区二区五区电影| 久久久午夜成人噜噜噜| 在线视频 亚太 国产 欧美 一区二区| 亚洲成色www久久网站| 女人被做到高潮免费视频| 一区二区视频| 一本之道高清乱码久久久| 国产精品自在线拍亚洲另类| аⅴ资源天堂资源库在线| 狠狠色丁香久久婷婷综合图片| 亚洲欧洲日产国码无码久久99| 两根大肉大捧一进一出好爽视频| 国产一区二区三区无码免费| 免费无码专区毛片高潮喷水| 内射人妻无码色ab麻豆| 久久久久青草线蕉综合超碰| 国产做a爰片久久毛片a片白丝|