午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務,零缺陷,輔助研發”PCBA訂購單需求。
行業新聞
行業新聞
Flexible smart driver makes PCB layout more orderly
07Nov
Boy 0條評論

Flexible smart driver makes PCB layout more orderly

Flexible SMArt driver makes PCB layout more orderly
The flexible smart driver PCB board layout is more orderly. Small flexible electronIC systems, such as mobile phones, PMP (personal media player), DSC (digital CAMera), DVC (digital camera), PME (portable Medical Equipment) and GPS (positioning system), have been developing continuously. Their functional characteristics exceed those of the next generation Therefore, the requirements of some peripheral circuits are often SIMilar, because their power supply, port, and MMI (human machine interface) all use similar technologies
PCB board


pcb board


Three-level strategy for low-power full-function products
With the increase of functions and performance of portable systems, the demand for power management is also increasing Therefore, the strategies used by OEMs to solve power consumption problems are evolving The first level strategy focuses on the efficiency of the energy management subsystem, including minimizing DC losses/DC converters, LDO, battery management, and battery protection circuits This is a power subsystem centric approach, which largely depends on the ability of transistor suppliers to produce components and integrated devices that consume less power than devices with similar architectures on the MARKet This makes OEM engineers' main task is to select components, balance energy efficiency, component cost, and package size Although this strategy works well, the component market has also realized its benefits. Most analog and analog mixed signal IC suppliers have not benefited greatly from the reduced process size
The focus of the second level of compliance is shifted from power supply to some parts of the system, even if some parts of a large AS or C do not work at a specific time This strategy is particularly effective when it is applied to high power users such as wireless connection hardware and display backlight, and can extend the working time of each charge, I/O port, or nonvolatile memory allocation by turning off low power loads such as audio subsystem Today's mobile phones, for example, have 20 or more power zones In addition to saving idle current in high-power circuits such as RF components and display backlights, this strategy can effectively reduce static power consumption as long as the system can turn off the clock drive part of the circuit With the development of IC manufacturing technology to smaller size, this strategy can effectively replace clock gating to reduce no-load current This energy-saving strategy depends on the technical contributions of the system architect, hardware and software implementers, and ASIC suppliers Although this strategy is successful, it is also limited by the load on the application processor. These additional functions force designers to consume more and more powerful computing resources For example, mobile phones have been transferred from ARM7 to ARM9 and ARM11 processors as optional baseband and secondary processing resources Similar trends have emerged in other portable electronic products, although to a lesser extent
The third level strategy focuses on reducing the power consumption of various functions without sacrificing performance One possible technology is to use distributed intelligent management, which does not require strong processing power and speed of baseband or application processors This strategy allows the processor to transfer all functions to the sEMI-automatic peripheral controller As a result, the processor can enter the sleep mode during human activities, instead of data processing or communication tasks that require the full power of the processor, such as the backlight driver of the intelligent display screen
Backlight scheme under the third level strategy
Users of portable electronics require a screen display that is clearly visible in all ambient light conditions.  The current portable devices usually use photodiodes or transistors to estimate the ambient light intensity and use it as the input of backlight driver control A photosensitive sensor requires a signal conditioning circuit: a DC biased form of excitation, amplification and A/D conversion or at least one or two threshold detection levels Through external components or analog I/O chip pins, the main processor usually monitors the output of the photosensitive sensor in the form of periodic data conversion The speed of this conversion varies from one to several orders of magnitude per second Then, the controller evaluates the results and generally divides them into three categories, one for each day, for well lit indoor environments or for poorly lit environments The processor does this by sending a control signal to the backlight driver, which provides one of three possible current levels for the LED string But this is not efficient Effective, this is a way to manage microprocessors: delegate tasks to a part of the system at a low running cost under the supervision of powerful and expensive central resources This does not seem to help with processor task offloading
1. Intelligent driver transfers processor tasks
Solutions based on the ADP5520 smart Backlight driver derive significant energy savings from LED drivers that can operate under microcontroller configuration control or automatically manage display lighting.  The ADP5520 consists of an asynchronous boost converter, a programmable ambient light management circuit, a state machine, and a configurable port extender to further save system resources The boost converter can supply power for up to six white LEDs in series, with a series voltage of up to 24.5V and a drive current of up to 30mA The ambient light measurement unit is divided into an ambient light sensor to provide all signal adjustment functions. Together with the on-chip state machine and the boost converter, 128 current levels from 0 to 30 mA are realized The ADP5520 was able to increase the operating time per charge by 15% in tests simulating variant mobile phone usage (Figure 1) Adding ambient light detection to the ADP5520 control method resulted in 50% more standby time per charge than the baseline measurement These curves are analogous to mobile interactive applications that do not require RF functionality, such as gaMES, text and email reading and writing, or camera applications Designers hope that their products can smoothly transition between different light levels, not just switch The lighting scheme under the control of the processor requires a lot of processor interaction to achieve smooth transition. In addition, compared with simple switch control, it significantly increases the load of the processor Smart LED driver, such as ADP5520, can realize various lighting and darkening current changes, including linear, square, and cubic laws, thus further reducing processor load (Figure 2) This configurable driver has 15 discontinuous and independent fade out times, ranging from 300ms to 5.5 seconds There is a resettable dimming timer on the chip, which can be programmed as one of 15 time intervals from 10 seconds to 120 seconds
2. Smart drives provide additional low-bandwidth capabilities
In addition to saving energy, such smart drives can provide more value by supporting other low-frequency wide peripheral devices For example, the ADP5520 integrates a configurable port extender that provides eight I/O pins The two I/O pins can also be connected to the third dedicated pin as independent current absorption pins, switching, and flash control for LED indicators with programmable dimming Other pins can be programmed for keyboard or general I/O These auxiliary LED drivers consume 0 to 14 mA of current and can be dimmed or dimmed in 64 steps As with the main backlight current consumption, the indicator connected to the auxiliary driver pin can be turned on or off, or light adjustment can be achieved through a linear or nonlinear sequence
3. The intelligent driver can reduce the number of PCB cables
To allow configuration data to flow from the processor to the smart drive and for status, I/O or keystroke data flows back to the processor. The ADP5520 implements an I2C interface This setting reduces the number of devices and wires between peripheral devices and controllers, thus simplifying the design of high-density PCB Electronic devices

點擊
然后
聯系
主站蜘蛛池模板: 久久婷婷五月综合色奶水99啪| 天堂va欧美ⅴa亚洲va| 亚洲色大成网站久久久| 亚洲国产欧美在线人成最新| av性色av久久无码ai换脸| 超碰97人人做人人爱可以下载| 久久久一本精品久久精品六六| www亚洲无?码A片| 国产免费午夜福利片在线| 99国产精品久久久久久久成人 | 国精品无码一区二区三区在线| 亚洲电影在线观看| 欧美影视精品久久| 精品免费视频| 国产精品视频一区国模私拍| 国产成人精品视频ⅴa片软件竹菊 欧美人与动牲交xxxxbbbb | 伊人久久大香线蕉av成人| 亚洲国产无套无码av电影| 色在线 | 国产| 国内揄拍国产精品人妻电影| 人妻中文字幕无码专区| 亚洲国产成人av在线观看| 国产又色又爽又刺激在线播放| 99久久精品6在线播放| 色婷婷香蕉在线一区二区| 性欧美牲交xxxxx视频| 天天狠天天天天透在线| 中文字幕无码肉感爆乳在线| 国产一区二区三区四区五区加勒比 | 日本大片在线看黄a∨免费| 18国产精品白浆在线观看免费| 亚洲中文字幕在线无码一区二区| 欧美丰满少妇xxxxx| 久久成人伊人欧洲精品| 免费看无码特级毛片| 亚洲欧美激情精品一区二区 | 欧美成人看片一区二三区图文| 国产av无码专区亚洲版综合 | 成人无码特黄特黄av片在线| 性欧美高清come| 99国产精品久久久久久久成人|