午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務,零缺陷,輔助研發”PCBA訂購單需求。
PCBA方案設計
PCBA方案設計
Why should there be no acute angle and right angle when wiring the PCB
12Nov
Boy 0條評論

Why should there be no acute angle and right angle when wiring the PCB

Why should there be no acute angle and right angle when wiring the PCB
Radio frequency, high-speed printed circuit board digital circuit: Sharp angle is prohibited and right angle is avoided as far as possible
For RF lines, if the corners are at right angles, there will be discontinuities. Discontinuities will easily lead to high-order modes, whICh will affect radiation and conduction efficiency If the RF signal line runs at right angles, the effective line width at the corner will be increased, and the impedance will be discontinuous, causing signal reflection In order to reduce discontinuity, there are two methods to deal with corners: chamfering and rounding The radius of arc angle shall be large enough. Generally, to ensure: R>3W
Printed circuit board


pcb board


Acute and right-angle routing
Acute-angle wiring is forbidden in general wiring.  Right angle wiring is usually a situation that needs to be avoided when wiring It has almost become one of the standards to measure the quality of cabling So, how much does right angle wiring affect signal transmission? In principle, acute angle and right angle wiring will change the line width of transmission line and cause impedance discontinuity The change of line width will lead to the change of impedance. When the equivalent width of the track changes, it will cause signal reflection We can see that when we are routing, if the linewidth changes, the impedance of the trajectory will change
Microstrip line, which consists of a strip conductor and a ground plane, with a dielectric in the middle If the dielectric constant of the medium, the width of the line, and the distance from the ground plane are controllable, then its characteristic impedance is also controllable, and its degree will be within ± 5%
A stripline is a copper strip placed between two conductive planes in the middle of a dielectric If the thickness and width of the line, the dielectric constant of the medium, and the distance between the two ground surfaces are controllable, the characteristic impedance of the line is also controllable, and the accuracy is within 10% Impedance discontinuity will reflect acute angle difference, right angle second, obtuse angle, round corner and straight line When the driver sends a signal to the transmission line, the amplitude of the signal depends on the voltage, the internal resistance of the buffer and the impedance of the transmission line The initial voltage of the drive end is determined by the voltage distribution of the internal resistance and line impedance

PCB board
Reflection coefficient, where - 1 a¤ ? ? a ¤1
No reflection occurs when ?= 0
When ? ?= 1 (Z 2 =a ??,  open circuit), total regular reflection occurs
When ? ?=- 1 (Z 2 =0, short circuit), total negative reflection occurs
The initial voltage is the source voltage Vs (2V) divided by Zs (25 ohms) and the transmission line impedance (50 ohms).  The subsequent reflectivity of Vinitial=1. Calculate 33V according to the reflection coefficient formula The reflectivity of the source end is calculated according to the source end impedance (25 ohms) and the transmission line impedance (50 ohms) according to the reflection coefficient formula.  It is -0.33; The reflectivity of the terminal is according to the terminal impedance (infinity) and the transmission line impedance (50 ohms), which is calculated as 1 according to the reflection coefficient formula; We get this waveform by superposing the initial pulse waveform according to the amplitude and delay of each reflection, which is why impedance miSMAtch is the cause of poor signal integrity Due to the existence of connections, device pins, track width changes, trace bends, and vias, impedance must change In retrOSPect, reflection is inevitable
printed circuit board
Is there any reason other than reflection? The influence of right angle wiring on signal is mainly reflected in three aspects
1. The angle can be equivalent to the capacitive load on the transmission line, which windows down the rise time;
2. Discontinuous impedance will cause signal reflection;
3. It was created at right angles
4. It is also said that acute corners will cause corrosion residues in the production process, which is not easy to handle This should not be difficult for current processing technology, nor should it be used as a reason The partial capacity caused by the right angle of the transmission line can be calculated by the following empirical formula: C=61W (Er) 1/2/In the above formula, Z0, C refers to the equivalent capacity of the corner (unit: pF), and W refers to walking The width of the line (unit: inch) For example, for a 4Mils 50 ohm transmission line (? r is 4.3), the capacitance brought by the right angle is about 0.0101pF, and the rise time change caused by it can be estimated as: T10-90%=2.2 * C * Z0/2=2.2 * 0.0101 * 50/2=0.556ps It can be seen from the calculation that the capacitance effect caused by the right angle trajectory is very small As the line width of the right angle track increases, the impedance there will decrease, and some signal reflection will occur We can calculate the equivalent impedance after adding the line width according to the impedance calculation formula mentioned in the chapter of transmission line, and then calculate the reflection coefficient according to the empirical formula: ?= (Zs-Z0)/(Zs+Z0).  In general, the impedance change caused by right angle wiring is between 7% - 20%, so the reflection coefficient is about 0.1. Moreover, as shown in the figure below, the impedance of the transmission line changes for a long time/2, and then recovers to the normal impedance after W/2. The entire impedance change is very short, usually within 10 pieces For ordinary signal transmission, such rapid and small changes can be almost ignored Many people have such an understanding of right angle wiring and believe that it is easy to transmit or receive electromagnetic waves and generate EMI This has become one of the reasons why many people believe that right angle wiring is not possible However, many practical test results show that the right angle trajectory will not produce obvious electromagnetic interference than the straight line Perhaps the current instrument efficiency and test level limit the testability, but at least it shows a problem The radiation of right angle wiring is less than the measurement error of the instrument itself In general, right angle wiring is not as bad as you think At least applicable to any influence, reflection, EMI, etc. of non RF and high-speed circuit board circuits, capacitors, etc The TDR test hardly reflects the results it produces High speed circuit board design engineers should still pay attention to layout, power/ground design, wiring design, vias and other aspects Of course, although the impact of right angle wiring is not very serious, this does not mean that we can use right angle wiring in the future Attention to detail is the basic quality that every engineer must possess Moreover, with the rapid development of digital circuits, PCB engineers will continue to increase the frequency of signal processing In the field of RF design above 10GHz, these small right angles may become the focus of research high speed PCB problems

點擊
然后
聯系
主站蜘蛛池模板: 欧美孕妇变态孕交粗暴| 99精品热视频这里只有精品| 免费纯肉3d动漫无码网站| 色偷偷av一区二区三区| 亚洲午夜不卡无码影院| 两性色午夜视频免费无码| 免费人妻无码不卡中文字幕18禁| 国产精品自在拍首页视频| 国产?肥老妇??视频| 国产成人亚洲综合色婷婷秒播 | 国语自产偷拍精品视频蜜芽| 99热热久久这里只有精品68| 熟女一区| 久久婷婷综合缴情亚洲狠狠_| 成人区人妻精品一熟女| 亚洲精品成人av在线| 国内精品久久久久久中文字幕| 老司机精品无码免费视频| 一本色道久久88加勒比—综合| 国产00高中生在线无套进入| 色婷婷国产精品高潮呻吟av久久| 国产在线精品欧美日韩电影| 欧美性猛交ⅹxxx乱大交妖精| 97超碰人人人人人人少妇| 亚洲日韩一区精品射精| 小说区 图片区色 综合区| 欧美熟妇精品一区二区三区| 午夜内射高潮视频| 精品一区二区三区无码av久久| 欧美日韩人人模人人爽人人喊| 人妻一区二区三区高清av专区| 高清视频在线观看一区二区三区| 东京热大乱系列无码| 99re6在线观看国产精品| 久久久久国精品产熟女久色| 免费人成小说在线观看网站| 国产在线无码视频一区| 成人无码av网站在线观看| 精品无码专区毛片| 伊人色综合久久天天五月婷| 久久2017国产视频|