午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務,零缺陷,輔助研發”PCBA訂購單需求。
PCBA方案設計
PCBA方案設計
The default value of single ended PCB is 50 ohms for control
19Nov
Boy 0條評論

The default value of single ended PCB is 50 ohms for control

The default value of single ended PCB is 50 ohms for control
Many people who are new to impedance will have this problem Why is a common single ended trace PCB controlLED by 50 ohms instead of the default 40 ohms or 60 ohms? This is a seEMIngly SIMple question that is not easy to answer Before writing this artICle, we also looked up a lot of information, the most famous of which is Howard Johnson, who answered this question,
Why is it difficult to answer? The signal integrity problem itself is a tradeoff problem. Recall that the most famous sentence in the industry is: "It depends on..." This is a question without a standard answer. Today, Mr. Expressway will briefly summarize this question with various answers. Here is also an introduction. I hope more people can summarize more relevant factors from their own perspective.
First of all, 50 ohms has a certain historical origin, which must start with standard cables. As we all know, a large part of modern electronic technology originates from the military, and has gradually changed from military use to civilian use. In the early days of microwave application, that is, during the Second World War, the selection of impedance was completely determined by the use demand. With the development of science and technology, it is necessary to establish impedance standards in order to achieve a balance between economy and convenience. In the United States, the most commonly used conduit is connected by existing rods and water pipes. 51.5 ohms is very common, but the adapters/converters seen and used are 50 ohms to 51.5 ohms; This is a joint Army and Navy solution. To solve these problems, an organization called JAN was established, which was later called DESC and was developed by MIL professionally. After comprehensive consideration, 50 ohm is finally selected to manufacture special conduits and convert them into various cables. At that time, the European standard was 60 ohms. Soon after, under the influence of Hewlett Packard and other companies leading the industry, Europeans were forced to change, and finally 50 ohms beCAMe the standard of the industry.
Circuit board


pcb board


It has become a convention that printed circuit boards connected to various cables eventually need to meet the impedance matching 50 ohm impedance standard
Secondly, from the perspective of PCB production, 50 ohms is more convenient. It can be seen from the impedance calculation formula above that too low impedance requires wider linewidth and thinner medium (or greater dielectric constant), which is more difficult to meet in space for current high-density plates; High impedance requires high thin line width and thicker dielectric (or SMAller dielectric constant), which is unfavorable to suppress electromagnetic interference and crosstalk. At the same time, from the perspective of mass production, the reliability of Multilayer board processing will be relatively poor; It is not surprising that the 50 ohm common line width and dielectric thickness (4~6mil) meet the design requirements in the environment of common data (impedance calculation is shown in the figure below) and are easy to handle.
Third, from the perspective of loss, based on basic physics, it can be proved that 50 ohm impedance skin effect has the smallest loss (from the reply of Dr. Howard Johnson). In general, the skin effect loss (dB) of cable L is proportional to the total skin effect resistance R (tissue length) divided by the characteristic impedance Z0. The total skin effect resistance R is the sum of the resistance of the mask layer and the intermediate conductor. At high frequencies, the skin effect resistance of the mask layer is inversely proportional to its diameter d2. The skin effect resistance of the inner conductor of a coaxial cable is inversely proportional to its diameter d1 at high frequencies. In this case, the total series resistance R is proportional to (1/d2+1/d1). Combining these factors, given the corresponding dielectric constant Er of d2 and isolation data, the following formula can be used to minimize the skin effect loss.
In any basic book on electromagnetic field and microwave, you can find that Z0 is a function of d2, d1 and Er.
Substitute Formula 2 into Formula 1, and multiply the numerator and denominator by d2 to get
Separate the constant term (/60) * (1/d2) and the effective term ((1+d2/d1)/ln (d2/d1)) from Equation 3 to determine the minimum point. Carefully observe the minimum point of Formula 3 controlled only by d2/d1, which is independent of Er and the fixed value d2. With d2/d1 as the parameter, draw the graph of L. When d2/d1=3.5911, the minimum value is obtained. Assume that the dielectric constant of solid polyethylene is 2.25, d2/d1=3.5911, and the characteristic impedance is 51.1 ohms. A long time ago, radio engineers, for convenience, approximated this value to 50 ohms as the best value for coaxial cables. This proves that L is the smallest at about 50 ohms.
Finally, from the perspective of power efficiency, after comprehensive consideration, the advantage of 50 ohms is also a compromise It is purely because of PCB track, low impedance is better For a transmission line with a given line width, the closer it is to the aircraft, the less electromagnetic interference and crosstalk will be, and it will not be easily affected by capacitive loads Impact However, from the perspective of the complete path, the most critical factor to consider is the drive capability of the chip In the early days, most chips could not drive transmission lines with impedance lower than 50 ohms, and transmission lines with higher impedance were inconvenient to implement A 50 ohm impedance is used for
To sum up: 50 ohms has its inherent advantages as a PCB industry, which is also a compromise after comprehensive consideration, but it does not mean that 50 ohms must be used In many cases, it depends on matching For example, 75 ohms is still the standard for remote communication Some cables and antennas use 75 ohms At this time, matching PCB line impedance is required In addition, some special chips can reduce the impedance of the transmission line by improving the driving ability of the chip, so as to better suppress electromagnetic interference and crosstalk For example, most Intel chips require 37 ohms of impedance control, 42 ohms or less I won't repeat it here

點擊
然后
聯系
主站蜘蛛池模板: 丰满人妻av无码一区二区三区| 国产精品高潮呻吟av久久小说| 国产一区| 97超级碰碰碰久久久久| 亚洲国产成人综合精品| 国产做爰又粗又大又爽动漫| 午夜成人福利片无码| 国产成人人综合亚洲欧美丁香花| 丰满多毛的大隂户毛茸茸| 国产超碰人人模人人爽人人喊| 亚洲大乳高潮日本专区| 久久精品道一区二区三区| 97婷婷狠狠成为人免费视频| 亚洲暴爽av天天爽日日碰| 亚洲亚洲人成网站网址| 久久国产精品人妻一区二区| 国产热a欧美热a在线视频| 99久久婷婷国产综合精品| 亚洲无av码一区二区三区| 亚洲精品久久久久午夜福利| 亚洲乱码中文论理电影| 成人国产精品??电影| 国产自产v一区二区三区c| 久久久久se色偷偷亚洲精品av | 精品国产第一国产综合精品| 国产精品无码aⅴ嫩草| 天堂av色综合久久天堂| 无码专区无码专区视频网站| 亚洲欧洲日韩在线电影| 男人放进女人阳道动态图| 18禁黄久久久aaa片广濑美月| av综合网男人的天堂| 十八禁网站在线观看| 亚洲www啪成人一区二区| 日本中文字幕乱码免费| 亚洲成a人片77777国产| 99久久国产综合精品五月天| 天天躁日日躁狠狠躁av中文| 综合 欧美 亚洲日本| 日本三级三级欧美三级| 香蕉人妻av久久久久天天|