午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務,零缺陷,輔助研發”PCBA訂購單需求。
PCBA方案設計
PCBA方案設計
Electronics Manufacturing: Design Skills of 24 GHz Microstrip Array Antenna
29Nov
Andy 0條評論

Electronics Manufacturing: Design Skills of 24 GHz Microstrip Array Antenna

High Frequency Circuit Board: design skills of 24 GHz mICrostrip array antenna


circuit board manufacturing, circuit board design, PCBA processing manufacturer will explain high-frequency circuit board: design skills of 24 GHz microstrip array antenna


In the frequency band greater than 10GHz, PCB high-frequency circuit board microstrip printed antenna has obvious advantages over waveguide slot antenna, lens antenna, reflector antenna and other antennas. The mature processing technology of PCB high-frequency circuit board can effectively control the production cost of microstrip antenna. The multi-layer mixed voltage technology of high-frequency circuit board, antenna board, RF board and low-frequency digital analog circuit board also makes the entire RF system highly integrated. The RO4350B plate produced by Rogers Company has excellent high-frequency performance and low production cost, and has been widely used and verified in commercial RF systems. The author has successfully designed a series of 24 GHz microstrip array antennas using Rogers RO4350B high-frequency circuit board, which have been applied to the company's listed products. Therefore, some design skills of PCB high-frequency circuit board are summarized for their application.


 circuit board


Antenna type

The microstrip array antenna is divided into parallel fed array and series fed array according to the feeding mode. The feeder line of parallel feed array is long, which leads to large incoming loss of feed network. For large arrays, the antenna efficiency is often limited, so the series fed array with more concise routing is generally selected. The series fed array is a resonant antenna, and its working bandwidth is SMAller than that of the parallel fed array, but the series fed structure is easier to realize the weighted excitation. RF boards adopt RO4350B boards with a thickness of 20mil. As the size of the array increases, the impedance bandwidth decreases gradually. The bandwidth is 1.2GHz with 16 elements, but only 0.75GHz with 324 elements. The frequency modulation bandwidth of the 24 GHz radar using the continuous wave system is usually less than 250 MHz, so the impedance bandwidth of the series fed array can meet the design requirements of most systems.


Thickness selection

The thickness selection is mainly based on three factors: the working bandwidth of the high-frequency circuit board microstrip antenna, the feed network design and the antenna efficiency.


1、 The thickness of the PCB high-frequency circuit board affects the impedance bandwidth of the microstrip antenna. The smaller the thickness of the PCB high-frequency circuit board, the larger the array size, the smaller the working bandwidth of the antenna.


2、 The thickness of the high frequency PCB circuit board determines the width of the microstrip line in the impedance change section of the feed network. For the RO4350B plate with a thickness of 20mil, the width of the 50 Ω and 100 Ω microstrip lines is 1.13mm and 0.27mm respectively, while the corresponding resonant length of the microstrip antenna at 24GHz is about 3mm. If the impedance of a microstrip change section in the feed network is too small or too large, the microstrip line will be too wide or too narrow. If the microstrip line is too wide, it is easy to cause structural interference, Narrow microstrip line will lead to processing difficulties.


3、 The dielectric thickness affects the conductor loss of microstrip line, and then affects the antenna efficiency. Based on the above factors, the author's RF board design experience is that small arrays should be 10 mil or 20 mil thick, large arrays should be 20 mil thick, and RF boards should be 10 mil thick. Of course, we can make whatever thickness you need.


Interconnection of antenna and RF chip

At present, doMEStic and foreign chip manufacturers have mass produced 24GHz RF chips on the MARKet. In the zero IF radar architecture, the pins of the RF chips are directly connected to the microstrip transceiver antenna ports. When the antenna board (HF board/HF circuit board)+several layers of common FR4+RF board (HF board/HF circuit board) HF board composite plates (such as FR4+RO4350b/FR4+RO3003/FR4+RO3006/FR4+RO5880) are used, the interconnection between the antenna and RF chip is realized through metallized vias. In the 24GHz frequency band, the discontinuity introduced by metallized vias longer than 1mm will be very obvious. The solution is to add several symmetrical metallized grounding vias around the metallized vias to form a coaxial like transmission structure. When the antenna and RF chip are located on the same side of the PCB high-frequency circuit board, the RF chip and the transceiver antenna are directly connected through the microstrip line or the coplanar waveguide. This high-frequency circuit board design can minimize the transmission line insertion loss. PCB manufacturers, PCB designers and PCBA manufacturers will explain the design skills of high-frequency PCB: 24 GHz microstrip array antenna.

點擊
然后
聯系
主站蜘蛛池模板: 无码中文av波多野结衣一区| 人妻互换一二三区激情视频| 欲色欲色天天天www| 国产成人一区二区不卡免费视频 | 噜噜吧噜吧噜吧噜噜网a| 又黄又爽又猛1000部a片| 亚洲精品拍拍央视网出文| 美女裸体跪姿扒开屁股无内裤 | 暖暖视频日本| 亚洲国产av玩弄放荡人妇系列 | 一区三区在线专区在线| 亚洲国产制服丝袜高清在线| 久99久无码精品视频免费播放| 亚洲欧美日韩中文字幕在线一区 | 色偷拍 自怕 亚洲 10p| 色又黄又爽18禁免费网站现观看| 国产无遮挡又黄又爽网站| 国产激情无码视频在线播放性色 | 高清国产亚洲精品自在久久| 日本熟日本熟妇中文在线观看| 狠狠躁日日躁夜夜躁2022麻豆| 国产伦久视频免费观看视频| 午夜无码一区二区三区在线观看| 天天爽天天狠久久久综合麻豆 | 亚洲综合色区在线播放2019 | 26uuu亚洲电影最新地址| 国产亚洲精品久久一区二区三区 | 国产网红主播精品一区| 精品无码中文字幕在线| 国产明星裸体xxxx视频 | 欧美丰满少妇xxxx性| 97超碰国产精品无码| 国产精品福利网红主播| 亚洲日本乱码一区二区产线一∨| 国内精品久久久久国产盗摄 | 久久精品久久久久久噜噜| 波多野吉av无码av乱码在线| 国产精品欧美福利久久| 久热这里只精品99国产6-99re视… | 在线无码| 国内精品免费久久久久电影院97|