午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務,零缺陷,輔助研發”PCBA訂購單需求。
PCBA方案設計
PCBA方案設計
Special attention: 8 phenomena and mistakes in PCB design
30Nov
Jeff 0條評論

Special attention: 8 phenomena and mistakes in PCB design

In PCB design, we often have the following eight phenomena, whICh often lead us to a mistake. Here is a short compilation to introduce each of these phenomena and comment on them one by one.

Phenomenon 1: The PCB design requirements of this board are not high, so use thinner lines to automatically cloth.

Comments: Automatic wiring will inevitably occupy a larger PCB area and generate many tiMES more vias than manual wiring. Among products in large batches, the factors considered by PCB manufacturers for price reduction, apart from business factors, are the line width and the number of vias. They respectively affect the yield of PCB board and the consumption of drill bits, saving the cost of suppliers, and thus finding reasons for price reduction.

pcb board

Phenomenon 2: These bus signals are pulLED with resistance, which makes me feel relieved.

Comment: There are many reasons why signals need to be pulled up and down, but not all of them need to be pulled up and down. Pull up and down the resistance to pull a SIMple input signal, and the current will be less than tens of microamps. But pull a driven signal, and the current will reach milliampere level. Today's systems often use 32 bits of address data, and possibly 244/245 isolated buses and other signals. If you pull up, several watts of power consumption will be consumed by these resistors.

Phenomenon 3: How to deal with these unused I/O ports of CPU and FPGA? Let it be empty first, and let it be later.

Comment: If the unused I/O port is suspended, a little interference from the outside may become an input signal that oscillates repeatedly. The power consumption of MOS devices basically depends on the number of flips of the gate circuit. If you pull it up, each pin will also have microamp current, so the best way is to set it as an output (of course, no other driving signals can be connected outside)

Phenomenon 4: There are so many gates left in this FPGA, so you can play it to your heart's content

Comment: The power consumption of FGPA is proportional to the number of flip-flop used and the number of flips, so the power consumption of the same type of FPGA in different circuits at different times may vary by 100 times. Minimizing the number of flip flops is the fundamental way to reduce FPGA power consumption.

Phenomenon 5: The power consumption of these SMAll chips is very low, so it is unnecessary to consider

Comments: It is difficult to determine the power consumption of a chip that is not too complex internally. It is mainly determined by the current on the pin. An ABT16244 consumes less than 1 mA without a load, but its indicator is that each pin can drive a load of 60 mA (such as matching a resistance of tens of ohms). That is, the maximum power consumption of a full load can reach 60 * 16=960mA. Of course, the power supply current is so large that the heat falls on the load.

Phenomenon 6: There are so many control signals in the memory. I only need to use OE and WE signals on this board. Just ground the chip selection, so that the data will come out much faster during the read operation.

Comment: The power consumption of most memories will be more than 100 times greater when the chip selection is valid (regardless of OE and WE) than when the chip selection is invalid. Therefore, CS should be used to control the chip as much as possible, and the width of the chip selection pulse should be shortened as much as possible when other requirements are met.

Phenomenon 7: Why are these signals overshoot? As long as the match is good, it can be eliminated

Comments: Except for a few specific signals (such as 100BASE-T and CML), there are overshoots. As long as they are not very large, they do not need to be matched, even if the matching is not the best. For example, the output impedance of TTL is less than 50 ohms, and some even 20 ohms. If such a large matching resistance is also used, the current will be very large, the power consumption will be unacceptable, and the signal amplitude will be too small to use. In addition, the output impedance of general signals at high output level and low output level is not the same, and there is no way to achieve complete matching. Therefore, the matching of TTL, LVDS, 422 and other signals is acceptable as long as overshoot is achieved.

Phenomenon 8: Reducing power consumption is a matter for hardware personnel, not software.

Comment: The hardware is just a stage, but the software is the singer. The access to almost every chip on the bus and the overturning of every signal are almost controlled by the software. If the software can reduce the number of accesses to external memory (use more register variables, use more internal CACHE, etc.) Timely response to interrupts (interrupts are usually low level and have pull-up resistors) and other specific measures for specific boards will make a great contribution to reducing power consumption.

It can be seen that in this paper, we should focus on eight phenomena and mistakes in PCB design to make PCB design more efficient

點擊
然后
聯系
主站蜘蛛池模板: 国产精品黑色丝袜高跟鞋| 久久国内精品自在自线400部| 成在人线av无码免费看| 夜精品一区二区无码a片| 亚洲人成亚洲人成在线观看| 亚洲国产成人高清在线播放| 欧美国产综合欧美视频| 精品国产一区二区三区四区阿崩| 亚洲欧美色综合影院| 秋霞无码久久久精品交换| 一区二区三区午夜无码视频| 日韩国产精品无码一区二区三区| 国产美女久久久亚洲综合| 风间由美性色一区二区三区| 日韩精品无码免费专区午夜不卡 | 无遮挡啪啪摇乳动态图gif| 久久伊人精品一区二区三区| 欧美亚洲综合久久偷偷人人| 国产农村乱对白刺激视频| 小??戳进?无遮挡cos| 精品国产av最大网站| 牲欲强的熟妇农村老妇女视频| 在线观看一区二区三区av| 免费无码国产欧美久久18| 久久综合九色综合欧美就去吻| 亚洲免费人成视频观看| 久久99精品国产麻豆不卡| 性一交一乱一伦一色一情孩交| 人人综合亚洲无线码另类| 狠狠亚洲色一日本高清色| 99久久精品无码专区| 久久国产精品_国产精品| 亚洲人成网站在线播放动漫| 国产成人综合在线观看不卡| 美女黄网站18禁免费看| 人妻丰满熟妇av无码区动漫| 国产农村乱对白刺激视频| 国内女人喷潮完整视频| 国产精品美女久久久久| 欧洲美熟女乱又伦免费视频| 国产无遮挡又黄又爽无vip|